This website isn’t supported by Internet Explorer. We recommend that you use a different browser (e.g. Edge, Chrome, Firefox, Safari, or similar) for the best experience of our content.

* Chez les patients diabétiques âgés et à haut risque, la cible de TIR est réduite à 50 % et le TBR est réduit à 1 % sous 3.9 mmol/l (70 mg/dl).1

** Moins de 1 % de cette période doit se situer dans un TBR «très bas» de moins de 3.0 mmol/l (54 mg/dl).1

† Moins de 5 % de cette période doit se situer dans un TAR «très élevé» au-dessus de 13.9 mmol/l (250 mg/dl).1

* Chez les patients diabétiques âgés et à haut risque, la cible de TIR est réduite à 50 % et le TBR est réduit à 1 % sous 3.9 mmol/l (70 mg/dl).1

** Moins de 1 % de cette période doit se situer dans un TBR «très bas» de moins de 3.0 mmol/l (54 mg/dl).1

† Moins de 5 % de cette période doit se situer dans un TAR «très élevé» au-dessus de 13.9 mmol/l (250 mg/dl).1

Reference not found

1.

Battelino T, et al. Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on Time in Range. Diabetes Care 2019;42(8):1593-603.

2.

Vigersky RA, McMahon C. The relationship of hemoglobin A1C to Time in Range in patients with diabetes. Diabetes Technol Ther 2019;21(2):81-5.

3.

The relationship of glycemic exposure (HbA1c) to the risk of development and progression of retinopathy in the diabetes control and complications trial. Diabetes 1995;44(8):968-83. 

4.

Perkovic V, et al. Intensive glucose control improves kidney outcomes in patients with type 2 diabetes. Kidney Int 2013;83(3):517-23.

5.

UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352(9131):837-53.

6.

The Action to Control Cardiovascular Risk in Diabetes Follow-On (ACCORDION) Eye Study Group and the Action to Control Cardiovascular Risk in Diabetes Follow-On (ACCORDION) Study Group. Persistent effects of intensive glycemic control on retinopathy in type 2 diabetes in the action to control cardiovascular risk in diabetes (ACCORD) follow-On study. Diabetes Care 2016;39(7):1089-100.

7.

Kröger J, et al. Clinical recommendations for the use of the ambulatory glucose profile in diabetes care. J Diabetes Sci Technol 2020;14(3):586-94.

8.

Carlson AL, et al. Clinical use of continuous glucose monitoring in adults with type 2 diabetes. Diabetes Technol Ther 2017;19(S2):S4-11.

9.

American Diabetes Association Professional Practice Committee. Glycemic targets: standards of medical care in diabetes 2022. Diabetes Care 2022;45(Supplement_1):83-96.

10.

The Association of Diabetes Care & Education Specialists. Personal continuous glucose monitoring implementation playbook; December 2020. https://www.diabeteseducator.org/docs/default-source/practice/educator-tools/cgm-playbooks/personal-cgm-playbook.pdf?sfvrsn=2. Dernier accés: Octobre 2021.

11.

Wysham CH, Kruger DF. Practical consideration for initiating and utilizing flash continuous glucose monitoring in clinical practice. J Endocr Soc 2021;5(9):bvab064.

12.

Wright EE Jr, et al. Time in Range: how to measure it, how to report it, and its practical application in clinical decision-making. Clin Diabetes 2020;38(5):439-48.

13.

Rama Chandran S, et al. Beyond HbA1c: comparing glycemic variability and glycemic indices in predicting hypoglycemia in type 1 and type 2 diabetes. Diabetes Technol Ther 2018;20(5):353–62.

14.

Monnier L, et al. Toward defining the threshold between low and high glucose variability in diabetes. Diabetes Care 2017;40(7):832–38.

15.

Rodbard D. Hypo- and hyperglycemia in relation to the mean, standard deviation, coefficient of variation, and nature of the glucose distribution. Diabetes Technol Ther 2012;14(10):868–76.

16.

Chehregosha H, et al. A view beyond HbA1c: role of continuous glucose monitoring. Diabetes Ther 2019;10(3):853-63.

Les références sont disponibles sur demande.